DETERIORATION OF PITTING CORROSION OF 316 STAINLESS STEEL BY SENSITIZATION HEAT TREATMENT

author

  • MOAYED M.H.,
Abstract:

In this research pitting Corrosion of a sensitized 316 stainless steel was investigated employing potentiodynamic, potentiostatic techniques. Sensitization process was carried out on as-received alloy by submitting the specimen in electric furnace set at 650°Cfor five hours and then the specimen was quenched 25°C water. Potentiodynamic polarization of as received and sensitized specimens in 1M H2SO4 solution at room temperature and 70°C clearly revealed that the sensitization process has caused a magnificent change on electrochemical behavior of the specimen by changing critical current density for passivation, passivation potential and passive current density. Optical microscopy examination of the specimen surface after oxalic acid electrochemical etching also showed the deterioration of grain boundary of sensitized specimen due to chromium carbide precipitation in compared to as-received one. Several anodic potentiodynamic polarization on rode shaped working electrodes prepared from as-received and sensitized specimen in 3.5% NaCl test solution proved an average ~220 mV drop in pitting potential due to sensitization. Anodic potentiostatic polarization at 400 and 200 mV above corrosion potential also demonstrate the deterioration of pitting resistance of alloy as a result of sensitization. Scanning electron microscopy examination of anodically polarized of sensitized specimen at 700mVprior and after oxalic acid etching revealed large stable pits with lacy cover and also openpits with deep crevice for etched specimens.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

IMPROVING PITTING CORROSION OF 304 STAINLESS STEEL BY ELECTROPOLISHING TECHNIQUE

Several surface modification techniques such as ion implantation, surface laser melting, have been employed to improve pitting corrosion resistance of stainless steel. Electropolishing is a technique in which the surface roughness is eliminated through a selective electrochemical dissolution. The effect of electropolishing on pitting corrosion of 304 stainless steel (SS) was investigated employ...

full text

Growth inhibition of cultured smooth muscle cells by corrosion products of 316 L stainless steel wire.

The potential cytotoxicity on vascular smooth muscle cells of corrosion products from 316 L stainless steel, one of most popular biomaterials of intravascular stents, has not been highlighted. In this investigation, 316 L stainless steel wires were corroded in Dulbecco's modified eagle's medium with applied constant electrochemical breakdown voltage, and the supernatant and precipitates of corr...

full text

In situ observation of pitting of stainless steel by XAFS.

An in situ observation technique by XAFS (X-ray Absorption Fine Structures) has been developed for observation of metal corrosion. XAFS spectra were obtained with a special electrochemical cell to elucidate pitting: change of concentrations and structures of ions near the interface of solution and metal. It has been successfully shown that the concentrations of Cr and Br are linearly dependent ...

full text

Effect of ageing heat treatment on corrosion behaviorof 17-4 PH stainless steel in 3.5% NaCl

The 17-4PH alloy is a martensitic stainless steel with 3–5 wt% Cu, strengthened by the precipitation hardening. Due to excellent mechanical properties, corrosion resistance and ease of heat treatment, this alloy has unique applications in nuclear power plants and marine constructions. In this paper, the influence of ageing heat treatment, solution annealing followed by ageing at 480, 550 and 62...

full text

Stainless Steel Type 316Ti

Allegheny Ludlum Type 316Ti (UNS S31635) is a titanium stabilized version of Type 316 molybdenum-bearing austenitic stainless steel. It is also known as DIN/EN designation No. 1.4571. The Type 316 alloys are more resistant to general corrosion and pitting/crevice corrosion than the conventional chromium-nickel austenitic stainless steels such as Type 304. They also offer higher creep, stress-ru...

full text

Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel

Many methods have been reported on improving the photogenerated cathodic protection of nano-TiO2 coatings for metals. In this work, nano-TiO2 coatings doped with cerium nitrate have been developed by sol-gel method for corrosion protection of 316 L stainless steel. Surface morphology, structure, and properties of the prepared coatings were investigated by X-ray diffraction, X-ray photoelectron ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  9- 15

publication date 2005-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023